TEM and STEM Studies on the Cross-sectional Morphologies of Dual-/Tri-layer Broadband SiO2 Antireflective Films

نویسندگان

  • Shuangyue Wang
  • Hongwei Yan
  • Dengji Li
  • Liang Qiao
  • Shaobo Han
  • Xiaodong Yuan
  • Wei Liu
  • Xia Xiang
  • Xiaotao Zu
چکیده

Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of MgF2-SiO2 Nanocomposite Thin Films and Investigation of Their Optical and Hydrophobic Properties

In this research, MgF2-2%SiO2/MgF2 thin films were applied on a glass substrate. At first, MgF2 thin films with the optical thickness were deposited on the glass slide substrates. Then, MgF2-2%SiO2 thin films were deposited on the glass coated with MgF2 thin films. Finally, the nanocomposite thin films were surface treated by the PFTS solution. Characterization of the thin film was done by X-Ra...

متن کامل

Progress Report for Aingra 09135

The cross-sectional RuO2/SiO2 composite films with different RuO2 and SiO2 and Ru2Si3 thin films, deposited by sputtering on silicon wafers and followed by the post-deposition annealing in the temperature range from 150 to 500 °C, will be investigated by transmission electron microscopy (TEM). The studies will provide important structural information on the as deposited films and their evolutio...

متن کامل

On the Investigation of Sol-Gel TiO2 Nanostructured Films Applied on Windshields Pre-Coated with SiO2 Layer by Dip-Coating Method

TiO2-SiO2 photocatalytic nanostructure film on windshield for self-cleaning purposes was prepared via sol–gel dip-coating method. TiO2 films were prepared on automotive glass pre-coated with a SiO2 layer by a dip-coating method followed by annealing at 500 °C for 30min. The films were characterized using X-ray diffraction XRD and scanning electron microscopy SEM, FE-SEM techniques. The TiO2-SiO...

متن کامل

Thermally stable antireflective coatings based on nanoporous organosilicate thin films.

Thermally stable nanoporous organosilicate thin films were realized by the microphase separation of pore-generating polymers mixed with an organosilicate matrix to be antireflective coatings (ARCs), for which a thin film with a refractive index (n) of 1.23 for zero reflection is required. The refractive index of such nanoporous organosilicate films can be tuned from 1.39 down to 1.23 by incorpo...

متن کامل

Optimized preparation of cross-sectional TEM specimens of organic thin films.

We present a route for the preparation of cross-sectional TEM specimens of crystalline organic thin films which minimizes the mechanical, chemical and thermal load of the organic film during preparation and allows to take TEM images with molecular resolution. A typical example of a thin film of diindenoperylene capped with a thin layer of gold is shown to demonstrate the application of the tech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018